On Applying Sampling Methods and Rule Based Classifiers
نویسندگان
چکیده
منابع مشابه
Uncertainty sampling methods for one-class classifiers
Selective sampling, a part of the active learning method, reduces the cost of labeling supplementary training data by asking for the labels only of the most informative, unlabeled examples. This additional information added to an initial, randomly chosen training set is expected to improve the generalization performance of a learning machine. We investigate some methods for a selection of the m...
متن کاملAnts Constructing Rule-Based Classifiers
This chapter introduces a new algorithm for classification, named AntMiner+, based on an artificial ant system with inherent self-organizing capabilities. The usage of ant systems generates scalable data mining solutions that are easily distributed and robust to failure. The introduced approach differs from the previously proposed AntMiner classification technique in three aspects. Firstly, Ant...
متن کاملOptimization and Interpretation of Rule-based Classifiers
Machine learning methods are frequently used to create rule-based classifiers. For continuous features linguistic variables used in conditions of the rules are defined by membership functions. These linguistic variables should be optimized at the level of single rules or sets of rules. Assuming the Gaussian uncertainty of input values allows to increase the accuracy of predictions and to estima...
متن کاملEnsembles of Abstaining Classifiers Based on Rule Sets
The role of abstaining from prediction by component classifiers in rule ensembles is discussed. We consider bagging and Ivotes approaches to construct such ensembles. In our proposal, component classifiers are based on unordered sets of rules with a classification strategy that solves ambiguous matching of the object’s description to the rules. We propose to induce rule sets by a sequential cov...
متن کاملBootstrapping polarity classifiers with rule-based classification
In this article, we examine the effectiveness of bootstrapping supervised machine-learning polarity classifiers with the help of a domain-independent rulebased classifier that relies on a lexical resource, i.e., a polarity lexicon and a set of linguistic rules. The benefit of this method is that though no labeled training data are required, it allows a classifier to capture in-domain knowledge ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Research in Advent Technology
سال: 2019
ISSN: 2321-9637
DOI: 10.32622/ijrat.752019220